
Software Contention Aware Queueing Network Model of
Three-Tier Web Systems (Work-In-Progress)

Shadi Ghaith, Miao Wang, Philip Perry and Liam Murphy
School of Computer Science and Informatics

University College Dublin, Ireland
shadi.ghaith@ucdconnect.ie

ABSTRACT
Using modelling to predict the performance characteristics
of software applications typically uses Queueing Network
Models representing the various system hardware resources.
Leaving out the software resources, such as the limited num-
ber of threads, in such models leads to a reduced prediction
accuracy. Accounting for Software Contention is a challeng-
ing task as existing techniques to model software compo-
nents are complex and require deep knowledge of the soft-
ware architecture. Furthermore, they also require complex
measurement processes to obtain the model’s service de-
mands. In addition, solving the resultant model usually
require simulation solvers which are often time consuming.

In this work, we aim to provide a simpler model for three-
tier web software systems which accounts for Software Con-
tention that can be solved by time efficient analytical solvers.
We achieve this by expanding the existing “Two-Level Itera-
tive Queuing Modelling of Software Contention” method to
handle the number of threads at the Application Server tier
and the number of Data Sources at the Database Server tier.
This is done in a generic manner to allow for extending the
solution to other software components like memory and crit-
ical sections. Initial results show that our technique clearly
outperforms existing techniques.

Keywords
performance models, performance prediction, web applica-
tions, software contention

1. INTRODUCTION
Using modelling to predict application performance under

various possible hardware (and software) configurations is
becoming widely used in capacity management processes [1]
[2]. It saves time and also removes the need to physically
build and evaluate a number of possible alternative systems.
A Queueing Network Model (QNM) which represents the
various hardware and software resources of the system can
be solved by either analytical techniques (which are fast but

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2568088.2576760.

are limited to simple QNMs) or by simulation solvers (which
can be applied to more complex QNMs but require a much
longer time to run the model).

The work done by Kounev et al [2] shows that building
QNMs to represent hardware resources only (such as CPU)
is relatively simple and fast. Yet, they show that the calcu-
lated response times are much lower (more than 30%) than
the real ones measured by conventional load testing. This
large error is due to the absence of modelling contentions
caused by software resources such as the limited number of
threads [2]. This deviation can be offset by increasing the
suggested hardware requirements which can result in wasted
hardware resources. Some techniques were introduced to
account for Software Contention (SC) [3] [4] [5] but suffer
from increased complexity in the QNM and additional ef-
fort to measure the service demands as well as the increased
time required to use simulation solvers. The time factor of
performance prediction is important as simulation solvers
may take hours for a medium size software system which
is needed to be repeated many times varying hardware and
software configuration options [6].

In his work [7] Menasce introduced a two layered iterative
technique to model SC. The technique is simple and time
efficient, but it is difficult to apply it to complex systems
models. In addition it requires some specific instrumentation
of the application code to measure various service demands
required by the software modules on each hardware resource.
In this paper, we aim to extend the technique proposed in
[7] to model a general three-tier web system such as the
one introduced in [2]. We also aim to reduce the collection
difficulties encountered when measuring the service demands
of the QNM. In doing so we expect to achieve the following
objectives:

1. Generate a generic model for three-tier web systems
which can account for contention caused by software
resources. In particular, in this paper we consider the
number of threads of the Application Server (AS) and
the number of database Data Sources (DS).

2. The model is simple enough to be solved using time
efficient analytical solvers.

3. The model is extendable to handle contention caused
by memory management and critical sections.

Our work can improve the capacity planning and man-
agement process by enhancing its accuracy and significantly
reducing the time required to solve the model. It will also be
useful in other processes that rely on multiple solutions of

Cop
y R

igh
ts

QNMs such as the performance regression testing technique
[8] [9].

2. OVERVIEW

2.1 QNM of a Three-Tier Web System
A typical three-tier web system consists of the following

three components [10]. First, the client component which
usually contains client software such as the web browser that
takes the user input and communicates with the server side
over the network. After the server side performs the neces-
sary functions, the client will then present the response to
the user transaction and the user will launch the next trans-
action after thinking for a period of time known as Think
Time (TT). Given that the client software is usually run
on individual user machines, its hardware (and even soft-
ware) service demands are very low and hence it is usually
just represented by a delay station denoted TT. The second
component is the AS which is usually composed of an appli-
cation platform, such as the JEE container, over which the
application is deployed. The platform usually assigns each
request to a thread to allow for serving multiple clients at the
same time. The number of available threads is limited [10]
and so it is a key factor that affects the application perfor-
mance. The third component is the Database Server (DBS)
on which a relational database software (such as Oracle) is
deployed and contains the application specific data. Before
the AS communicates with the DBS (to store and read data)
it requests a DS from the DBS to handle this communica-
tion. The number of DS’s available from the DBS is also
limited [10] and is another key factor for the performance
of such systems. The three-tier web system is usually rep-
resented by a hardware QNM such as the one shown at the
bottom of Figure 1.

2.2 Two-Level Iterative Queueing Modelling
of Software Contentions

The work in [7] by Menasce is one of the simplest approx-
imations to handle SC. Yet, it provides very good results, as
shown in the paper and as we found in our experiments. This
approach requires an iterative solution of two QNMs: One
is the Hardware Queueing Network (HQN) and the other is
the Software Queueing Network (SQN).

The HQN is a typical QNM such as the one shown at
the bottom of Figure 1, where hardware resources such as
CPU and hard disk are modelled as load independent queue-
ing stations and the user TT node is modelled by a delay
station. The SQN also contains the TT station as well as
a set of nodes each of which represents a certain software
module. Each software module either causes no queueing
in which case it is represented by a delay station, or it can
cause queueing (such as a critical section) in which case it is
represented as a load independent queue station. For exam-
ple, the critical section is represented by a station that has
one processing unit and a queue. A simple SQN is shown at
the top of Figure 1.

Each software module in the SQN has a service demand
on each hardware node in the HQN. These are measured
using a single user test by instrumenting the software code.
The total service demand on each module in the SQN is cal-
culated by the summation of all service demands for that
module on each station in the HQN. While, the total ser-
vice demands for each hardware station in the HQN is the

summation of all service demands for that station caused by
each software module in the SQN.

The SQN is first solved with the initial (single user) mod-
ules’ total service demands using the total number of users
accessing the system. Then the number of blocked users is
calculated by finding out the number of users in each queue
station within the SQN. The HQN is then solved with the
total number of users excluding the users in the queues of
the SQN and the total service demands of the hardware sta-
tions. After solving the HQN, the service demand of each
module in the SQN is set to the sum of the fraction of the
residence time (queueing and serving time) of each station
in the HQN proportional to this module contribution to the
original total service demands of each HQN station. Then
the above is repeated again by solving the SQN with the
new service demands and solving the HQN with the total
number of users excluding the blocked users. This continues
until the number of blocked users is reasonably stable.

The approximation above has the following drawbacks:

1. Finding the service demands per software module for
each hardware resource is complicated. It requires in-
strumentation at the code level on the border of each
software module and on each access to hardware re-
sources within each module. This requires a detailed
investigation of the code which will not be always pos-
sible, especially in industrial environments. On the
contrary, the hardware service demands used for mod-
elling the hardware resources, ignoring the SC, can be
easily measured with a single user test [5].

2. The current approach has a single level (depth) of SC
modules. But, in practice, and taking the example of
the critical section in the AS where its code may access
the database and such a call will suffer from another
SC, i.e. the DS. Hence, a new level of SC is possible
and needs to be modelled.

3. METHODOLOGY
In this section, we will extend and apply the core idea

of the Two-Level Iterative Queueing Modelling of Software
Contention to the three-tier web system (both introduced
in the previous section). We start by modelling the number
of threads in the AS in a way that simplifies the service
demands measurement step. Then we show how we can work
around the nesting of the software resources by converting
the HQN and SQN to product form QNMs.

3.1 Applying Two-Level Iterative Queueing
Modelling to Number of AS Threads

As discussed in Section 2.1, the AS dispatches each new
job to a new thread which executes the required server mod-
ule. During its execution, the thread accesses the hardware
resources (CPU and hard disk) on both the AS and the DBS
(we describe the DS contention in the next section). Given
that we approximate that most of the AS code is executed
within the thread (except the ignorable demands of the dis-
patching module), the SQN will only have one module. This
module can be represented by a single-queue multi-server
station, where the number of servers equals the number of
available threads in the AS. Figure 1 shows both the HQN
and the SQN in this case. Hence, the service demand for
that single software module equals the sum of service de-
mands over all the hardware resources both at the AS and

Cop
y R

igh
ts

the DBS. This simplification allows us to use the service
demands measured by a single user test [5] on all system
hardware resources.

Figure 1: SQN-HQN of a Simple Three-Tier Web
System with Application Server Threads.

The SQN can be solved analytically by modelling the
single-queue multi-server station in the SQN as a load de-
pendent station as detailed in [11]. Analytically solving the
HQN with the non-blocked users is also straightforward.
The performance of this solution is much better than the
simulation techniques used to model the number of threads
such as the Finite Capacity Region (FCR) of the Java Mod-
elling Tool (JMT) [4] described in the Related Work section.
The number of iteration was found to be small for such sys-
tems (i.e. less than 15 in the case study below).

If we omit the handling of the number of AS threads, the
same technique can be used to model the DS, except that
the service demands of the module in the SQN is the sum
of the DBS CPU and hard disk. While the AS hardware
stations, CPU and hard disk, will appear in the SQN and
handled in a similar way to the TT station, i.e. they will not
contribute to the DS module service demands in the SQN.

Trying to model both the AS threads and the number of
DS’s in the DBS results in a nested SQN modules, making
the entire technique not viable in its current form.

3.2 Tiered Two-Level Iterative Queueing Mod-
elling of Software Contention

The HQN in Figure 1 shows that the AS makes multiple
calls to the DBS. The DBS returns the execution to the AS
after each call and finally the AS returns back to the user
(TT station). Given that the number of DS’s on the DBS
is also limited, the SC effect happens at both tiers of the
system resulting in a complex nested SQN. To rectify this,
we consider the approximation used in [2] by Kounev et al
which approximates the QNM of a system similar to the

HQN of our work with a model in which each station is vis-
ited only once. This makes the HQN simpler as the AS will
make one call to the DBS which will serve the job and re-
turn back to the TT station. This simplification is validated
also with their results. We provided the theory behind this
approximation based on the BCMP approximation [12] in
our previous work [8].

In the same manner as explained for the HQN, and by ap-
plying the same theoretical background [8], we believe that
the same approximation is valid on the SQN level. This
means that we assume the job visits each software module
(the AS threads and the DBS DS’s) only once. The SQN
contains two single-queue multi-server stations each of them
is visited once as shown in Figure 2. Each software mod-
ule only relies on the hardware service demands within the
same tier i.e. the threads module only relies on the CPU
and hard disk service demands of the AS and the DS mod-
ule only relies on the CPU and hard disk service demands of
the DBS. The blocked users are calculated to include users
waiting in the queues of both single-queue multi-server sta-
tions representing the threads and DS modules. The SQN
and HQN are iteratively solved in the same manner as ex-
plained above. This approximation can be generalized to
n-tier systems and has been validated against the three-tier
web system described in this paper.

Figure 2: SQN-HQN of a General Three-Tier Web
System with Tiered Software Modules (Threads and
Data Sources).

4. VALIDATION
We verified the method developed in this paper on the

TPC-W workbench application deployed on the IBM Web-
Sphere Application Server and IBM DB2 Database Server
with 500 users and three transaction types, as follows:

• Performed a load run using a load generator and mea-
sured each transaction response time and the resources
utilization (CPU and hard disk on AS and DBS).

• Measured the various transactions service demands on
all hardware resources by a single-user test.

• Predicted the response time of each transaction and
resources utilization (CPU and hard disk on AS and
DBS) by solving the QNM without taking the SC into
account (i.e. similar to [2]).

• Used the technique presented in this paper to predict
the same values.

Cop
y R

igh
ts

• Solved the HQN model shown in Figure 2 using the
FCR feature of the JMT.

We had the following observations for the transaction type
with the highest response time:

1. The response time calculated using the normal QNM
(i.e. not taking the SC into account) is 18% lower than
that measured with the load test. While the resource
utilizations are within 4% range. This confirms the
results achieved by Kounev et al [2].

2. The response time calculated using the presented tiered
HQN-SQN (i.e. taking the SC into account) is 6.5%
lower than that measured with the load test. While the
resource utilizations are within 3% range. That is, we
had an improvement of about 300% for the accuracy
of response time prediction compared to [2].

3. The presented technique converged within 2 seconds
and needed 13 iterations, while the FCR approach re-
quired just over 2 minutes. That is, the presented
tiered SQN-HQN technique takes around 10% of the
time required by simulation.

5. RELATED WORK
Modelling three-tier web systems has been explored pre-

viously, particularly by Liu et al [10]. They built a QNM
based on the architecture of typical three-tier web applica-
tions. The model incorporates the threads at all three tiers
and then a solution is approximated by using the MVA tech-
nique. The solution augments the hardware and software
components within the same elements of the QNM, which
makes it hard to use such a model in capacity management
where it is always required to modify hardware and software
parameters separately to achieve the optimum configuration.

Layered Queueing Networks (LQN) were introduced to
handle the SC issue [3]. LQN is based on software resources
representing various software operations as the main nodes
of the QNM, and hardware resources (such as CPU) as leaf
nodes. Software resources call each other forming a multi-
layered QNM. It is assumed that the service demands for
each software resource on each hardware resource are known
(i.e. either estimated by developers or measured by instru-
menting the code). This assumption makes the approach
difficult to adopt in capacity management processes where
access to the code is usually not available. Even if code
access is available, instrumenting the code to measure vari-
ous service demands requires deep knowledge of all parts of
the code, such knowledge is rarely available in large appli-
cations which are usually developed by multiple teams each
responsible for just one software module. In addition, for
any LQN with moderate complexity, the expansive simula-
tion techniques are the only possible way to solve them.

Existing tools, such as the JMT, introduced some capabil-
ities to model SC such as the FCR feature of the JSIMgraph
part of the JMT [4]. The FCR is used to specify the num-
ber of jobs within a certain block of the QNM which allows
modelling of constraints such as the number of threads and
DS’s. The performance of JSIMgraph (simulation), specifi-
cally when introducing FCRs prevent it from being used in
real capacity management projects.

6. CONCLUSIONS AND FUTURE WORK
Current modelling techniques to account for SC require

complex models, hard to obtain service demands for and are
expensive to solve. Hence, capacity management projects
typically rely on hardware models and apply some assump-
tions and rules of thumbs to account for SC. In this paper
we reduced some of the difficulties of the “Two-Level Itera-
tive Queuing Modelling of Software Contention” method by
Menasce and applied it to the common three-tier web sys-
tems. We achieved a simplification of the model where it is
easier to obtain service demands and can be solved quickly
utilizing basic analytical solvers. We showed that our tech-
nique provides three times more accurate results in 10% of
the time compared to other solvers with SC capabilities.

In this short paper, we explained the technique to account
for the number of threads and the DS’s; in the future we plan
to account for other factors, mainly the memory and critical
sections. Also, the technique will be verified on more com-
plex systems, like those with clustered servers. In addition,
we plan to show the improvement on actual capacity man-
agement projects and on other fields utilizing QNMs, such
as the regression testing data analysis.

7. ACKNOWLEDGMENTS
Supported, in part, by Science Foundation Ireland grant

10/CE/I1855.

8. REFERENCES
[1] L. Grinshpan. Solving Enterprise Applications Performance

Puzzles, pages 5–57. John Wiley and Sons, Inc., Hoboken, New
Jersey, 2012.

[2] S. Kounev and A. P. Buchmann. Performance modeling and
evaluation of large-scale j2ee applications. In Int. CMG
Conference, pages 273–283, 2003.

[3] J.A. Rolia and K.C. Sevcik. The method of layers. Software
Engineering, IEEE Transactions on, 21(8):689–700, 1995.

[4] M.Bertoli, G.Casale, and G.Serazzi. Jmt - performance
engineering tools for system modeling. ACM SIGMETRICS
Performance Evaluation Review, 36(4):10–15, March 2009.

[5] Samuel Kounev. J2ee performance and scalability-from
measuring to predicting. In Spec Benchmark Workshop,
page 12, 2006.

[6] CU Smith. Performance Engineering of Software Systems.
Addison-Wesley, 1990.

[7] D. Menasce. Two-level iterative queuing modeling of software
contention. In Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, 2002.
MASCOTS 2002. Proceedings. 10th IEEE International
Symposium on, pages 267–276, 2002.

[8] S. Ghaith, M. Wang, P. Perry, and J. Murphy. Automatic,
load-independent detection of performance regressions by
transaction profiles. In Proceedings of the 2013 International
Workshop on Joining AcadeMiA and Industry Contributions
to testing Automation, JAMAICA 2013, pages 59–64, New
York, NY, USA, 2013. ACM.

[9] S. Ghaith, M. Wang, P. Perry, and J. Murphy. Profile-based,
load-independent anomaly detection and analysis in
performance regression testing of software systems. In 17th
European Conference on Software Maintenance and
Reengineering (CSMR’13), Genova, Italy, 2013.

[10] Xue Liu, J. Heo, and Lui Sha. Modeling 3-tiered web
applications. In Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2005. 13th IEEE
International Symposium on, pages 307–310, 2005.

[11] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing
Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications. Wiley, 2006.

[12] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios.
Open, closed, and mixed networks of queues with different
classes of customers. Journal of the ACM, 22(2), pages
248–260, 1975.

Cop
y R

igh
ts

